Cognitive Vitality Reports® are reports written by neuroscientists at the Alzheimer’s Drug Discovery Foundation (ADDF). These scientific reports include analysis of drugs, drugs-in-development, drug targets, supplements, nutraceuticals, food/drink, non-pharmacologic interventions, and risk factors. Neuroscientists evaluate the potential benefit (or harm) for brain health, as well as for age-related health concerns that can affect brain health (e.g., cardiovascular diseases, cancers, diabetes/metabolic syndrome). In addition, these reports include evaluation of safety data, from clinical trials if available, and from preclinical models.

Wolffia globosa (Mankai)

Evidence Summary
Rich in polyphenols, mankai showed benefits for brain and cardiovascular health, though most studies tested it as part of a healthy Mediterranean diet, so the effects of mankai alone are less clear. It may increase manganese intake, a potential concern.

Neuroprotective Benefit: In obese or dyslipidemic people, the green Mediterranean diet including mankai slowed the decline in hippocampal volume but did not affect cognition. No clinical trials have tested mankai alone in cognitive aging or dementia.

Aging and related health concerns: In obese or dyslipidemic people, the green Mediterranean diet including mankai decreased body weight, waist circumference, LDL-cholesterol, blood pressure, intrahepatic fat, and a cardiovascular risk score.

Safety: No clinical trials have tested the long-term safety of mankai supplementation. Mankai contains high levels of manganese, which could be unsafe. Mankai contains phylloquinone, which could antagonize the effects of anticoagulants such as coumarins.
What is it?
Wolffia globosa, also known as mankai, is an aquatic plant of the duckweed family. It has a unique nutritional composition for a plant, with about 45% of its dry weight composed of protein including all 9 essential amino acids, 35-40% consisting of carbohydrates, and 9.5-12% consisting of fat ([EFSA Panel](https://www.efsa.europa.eu/en/efsajournal/pub/4810)). Mankai is also rich in omega-3 fatty acids, dietary fiber, polyphenols, iron, and several micronutrients including beta-carotene, riboflavin, vitamin B6, and folate. Total polyphenolic content ranges from 382 to 700 mg/100 g (gallic acid equivalents). One cup of mankai shake (equivalent to 20 g of dry matter) provides 18% of recommended protein intake, 75% of iron intake, 60% of folic acid intake, and 21% of vitamin B12 intake ([Sela et al., 2020](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6836362/)).

Mankai has been used as a vegetable and additives to food in northern Thailand, Myanmar, and Laos ([EFSA Panel](https://www.efsa.europa.eu/en/efsajournal/pub/4810)). In the US, mankai powder has been on the market since 2019 as food ingredient (e.g., plant-based meat alternatives, shakes, and baked goods).
Neuroprotective Benefit: In obese or dyslipidemic people, the green Mediterranean diet including mankai slowed the decline in hippocampal volume but did not affect cognition. No clinical trials have tested mankai alone in cognitive aging or dementia.

Types of evidence:
- 1 clinical trial testing the effects of green Mediterranean diet that included mankai shakes
- No laboratory studies

Human research to suggest prevention of dementia, prevention of decline, or improved cognitive function:
No studies have tested mankai by itself as an intervention for preventing dementia or cognitive decline.

In a randomized controlled trial (DIRECT PLUS), 224 participants with abdominal obesity or dyslipidemia were randomly assigned to one of three groups: 1) a control group that received nutritional counseling promoting a healthy diet, 2) a low-calorie Mediterranean diet group with high amounts of vegetables, poultry/fish replacing beef/lamb, and 28 grams of walnuts/day (+440 mg/day of polyphenols), and 3) a low-calorie green Mediterranean diet group that followed the same instructions as the Mediterranean diet group, but in addition, consumed green tea (3-4 cups/day) and a green shake of mankai (*Wolffia globosa*, 100 grams, frozen plant cubes) as a dinner substitute, together adding 800 mg/day of polyphenols, while avoiding processed and red meat completely (Kaplan et al., 2022). All groups were given free gym membership and encouraged to exercise. After 18 months, there was an overall decline in the volume of the hippocampus due to the normal changes that occur with aging, and this decline was more pronounced in participants over 50, consistent with previous findings showing that atrophy of the hippocampus accelerates at the age of 55 (Schmidt et al., 2018). However, in participants over the age of 50, there was less decline in the volume of the hippocampus in people eating the Mediterranean diet compared to those in the control group, with the best outcomes seen in people consuming the green Mediterranean diet (hippocampal occupancy: -0.8±1.6% in the green Mediterranean group vs. -1.3±1.4% in control; 95% CI, -1.5 to -0.02; p=0.042). Many metrics were associated with slower decline in the volume of the hippocampus. For people over the age of 50, weight loss, better insulin sensitivity (measured by HOMA-IR), and lower triglyceride levels were associated with slower decline in hippocampus size.

For all age groups, greater intake of mankai (p=0.043), green tea (p=0.016), and walnuts (p=0.023), and reduced intake of red and processed meat (p=0.047 and 0.042, respectively) were associated with slower decline in hippocampus size (Kaplan et al., 2022).
This finding was partly confirmed by a urine analysis, where participants with high urine levels of specific polyphenols (urolithin A and tyrosol), reflecting high dietary intake of polyphenols, had slower decline in hippocampus size.

Interestingly, neither the Mediterranean diet nor the green Mediterranean diet were associated with benefits in cognitive functions in this study (Kaplan et al., 2022). This lack of cognitive effect may be explained by the relatively young age (average, 51 years old) and good baseline cognitive health of the study participants, the small size of the study, and the short intervention time. A future larger study with a longer intervention testing mankai specifically in an older population could potentially answer the question of whether mankai has benefits for neuroprotection and cognitive function.

Human research to suggest benefits to patients with dementia:
No clinical trials have tested mankai in dementia patients.

Mechanisms of action for neuroprotection identified from laboratory and clinical research:
Mankai is rich in many nutrients and micronutrients that are important for optimal brain function, including omega-3 fatty acids, vitamin B12, folate, and polyphenols (Meir et al., 2021). About 200 different polyphenols and phenolic compounds have been detected in mankai. Examples of polyphenols detected in the mankai plant included quercetin, rutin, myricetin, apigenin, luteolin, epicatechin, caffeic acid, gallic acid, resveratrol, coumarin, and carnosol.

In the DIRECT PLUS randomized controlled trial described above, serum vitamin B12 levels increased by 5.2% (+1.25 ± 126.5 pg/mL) in the control group, 9.9% (+32.6 ± 76.2 pg/mL) in the Mediterranean diet group, and 15.4% (+48.8 ± 124.9 pg/mL) in the mankai-containing green Mediterranean/low-meat diets (p=0.025 between control and green Mediterranean groups) (Sela et al., 2020). When statistically adjusted for age, sex, and baseline vitamin B12 levels, the significant difference remained (p=0.01).

Mankai cultured in greenhouse conditions contained a substantial level of bioactive forms of vitamin B12, and levels were stable across 4 seasons (Sela et al., 2020). Although vitamin B12 is typically rich in animal products like red meat, dairy, and eggs, the green Mediterranean diet discouraged meat intake, yet vitamin B12 levels increased significantly with the green Mediterranean diet. This increase is likely attributed to the high levels of vitamin B12 present in mankai.
APOE4 interactions: The randomized controlled trial evaluating the effects of the Mediterranean diet and the green Mediterranean diet (including mankai) against control reported no associations of APOE4 genotype with brain volumes or with trajectories of brain volumes after 18 months of diet-lifestyle intervention, but the study had a low number of APOE4 carriers (Kaplan et al., 2022). Also, because mankai was not tested by itself, APOE4 interactions could not be evaluated for mankai specifically.

Aging and related health concerns: In obese or dyslipidemic people, the green Mediterranean diet including mankai decreased body weight, waist circumference, LDL-cholesterol, blood pressure, intrahepatic fat, and a cardiovascular risk score.

Types of evidence:
- 1 randomized controlled trial testing the effects of green Mediterranean diet that included mankai (findings published in multiple articles)
- 1 randomized controlled trial comparing mankai green shake with yogurt shake
- A few laboratory studies

Obesity: BENEFIT WITH THE GREEN MEDITERRANEAN DIET
No clinical trials have tested mankai alone for obesity.

In the DIRECT PLUS randomized controlled trial, 294 participants with abdominal obesity or dyslipidemia were randomly assigned to one of three groups for 18 months: 1) a control group that received nutritional counseling promoting a healthy diet, 2) a low-calorie Mediterranean diet group with high amounts of vegetables, poultry/fish replacing beef/lamb, and 28 grams of walnuts/day (+440 mg/day of polyphenols), and 3) a low-calorie green Mediterranean diet group that followed the same instructions as the Mediterranean diet group, but in addition, consumed green tea (3-4 cups/day) and a green shake of mankai (Wolffia globosa, 100 grams, frozen plant cubes) as a dinner substitute, together adding 800 mg/day of polyphenols, while avoiding processed and red meat completely (Tsaban et al., 2020). Weight loss was similar between the two Mediterranean diet groups; the green Mediterranean diet group lost 6.2±5.9 kg, the Mediterranean diet group lost 5.4±5.6 kg, and the control group lost 1.5±3.9 kg (p<0.001 for both comparisons with control). However, the green Mediterranean group had a greater reduction in waist circumference (-8.6±6.5 cm) than the Mediterranean (-6.8±5.9 cm; p=0.033) and control (-4.3±4.7 cm; p<0.001) groups.
Ghrelin, known as the hunger hormone, is high during fasting and decreases after eating. Lower fasting ghrelin levels are associated with obesity and metabolic syndrome. In a secondary analysis of the above DIRECT PLUS trial, after 18 months of intervention, fasting ghrelin levels increased by 1.3%, 5.4%, and 10.5% in control, Mediterranean, and green Mediterranean groups, respectively (p=0.03 for green Med vs control groups) (Tsaban et al., 2022). Among men, an increase in fasting ghrelin levels was associated with favorable changes in insulin resistance profile (HbA1c and HOMA-IR) and visceral adipose tissue regression, after adjusting for relative weight loss. In contrast, female participants had a nonsignificant increase in fasting ghrelin levels after 6 months of intervention, but a significant reduction after 18 months that was numerically greater in the green Mediterranean group than the Mediterranean and control groups (control, −2.8±5.5%; Med, −5.8±7.3%; green Med, −20.1±7.1%). Because women were underrepresented in this trial, it is not clear if this is a true sex-specific difference.

In a sub-study of the DIRECT PLUS trial, after 6 months of intervention, 90 participants provided fecal samples that were processed into frozen, opaque, and odorless capsules of autologous fecal microbiota transplantation (Rinott et al., 2021). Participants were assigned to either 100 capsules containing their own fecal microbiota or placebo pills for 8 months, from month 6 to month 14. The primary outcome was weight regain during months 6-14, which were not significantly different across control, Mediterranean, and green Mediterranean groups. However, the autologous fecal microbiota transfer (aFMT) intervention significantly attenuated weight regain in the green-Mediterranean group (aFMT, 17.1%; placebo, 50%; p=0.02), but not in the control or Mediterranean diet groups. Similarly, aFMT treatment attenuated waist circumference gain (aFMT, 1.89 cm; placebo, 5.05 cm; p=0.01) and insulin rebound (aFMT, −1.46±3.6 μIU/mL; placebo, +1.64±4.7 μIU/mL; p=0.04) in the green Mediterranean group but not in the control or Mediterranean groups. The green-Mediterranean diet was the only intervention to induce a change in microbiome composition during the weight-loss phase, and to promote preservation of weight-loss-associated specific bacteria after the aFMT. In an exploratory analysis of mankai specifically, increased frequency of mankai intake at 6 months was associated with lower subsequent weight regain in people receiving aFMT treatment compared to placebo (p=0.04). A trend was also seen with increased green tea intake at 6 months (p=0.06).

Cardiovascular disease: BENEFIT WITH THE GREEN MEDITERRANEAN DIET
No clinical trials have tested mankai alone for the treatment or prevention of cardiovascular disease.

In the DIRECT PLUS randomized controlled trial, after 6 months the green Mediterranean group achieved greater decrease in LDL cholesterol [green Mediterranean, -6.1 mg/dL (-3.7%), Mediterranean, -2.3 mg/dL (-0.8%), control -0.2 mg/dL (+1.8%); p=0.012 between green Mediterranean and control
groups] and diastolic blood pressure (green Mediterranean, -7.2 mmHg; Mediterranean, -5.2 mmHg; control, -3.4 mmHg; p=0.005 between green Med and control groups)(Tsaban et al., 2020). The LDL-C/HDL-C ratio decline was greater in the green Mediterranean group (-0.38) than in the Mediterranean (-0.21; p=0.021) and control (-0.14; p<0.001) groups. Triglyceride levels were reduced similarly in both Mediterranean diet groups (p=0.95) and significantly more than in the control group (p=0.008 and 0.11 for Med and green Med groups, respectively). Reduction in systemic inflammation, measured by high-sCRP, was greater in the green Mediterranean group (-0.52 mg/L) than in the Mediterranean (-0.24 mg/L; p=0.023) and control (-0.15 mg/L; p=0.044) groups. Also, the green Mediterranean group achieved a better improvement in the 10-year Framingham Risk Score after 6 months of intervention (-3.7% absolute risk reduction, from 13.7 to 10.4%) compared to the Mediterranean group (-2.3%; p=0.073) and control group (-1.4%; p<0.001). The authors speculate that the reduction in LDL cholesterol with the green Mediterranean diet could be due in part to lower intake of meat and poultry and the high phytosterol content of the mankai shake which compete with cholesterol for absorption in the digestive system. The authors also discuss that the decrease in systolic and diastolic blood pressures may be mediated by the increased fiber content and higher levels of nitric oxide from vegetables.

Diabetes and metabolism: IMPROVED GLUCOSE LEVELS AND HOMA-IR
In a randomized controlled crossover trial, 20 abdominally obese participants replaced dinner with a mankai shake (Wolffia globosa duckweed; 3 frozen cubes of 25 g each) or a yogurt shake (Zelicha et al., 2019). These participants were recruited from the DIRECT PLUS study. The 2-week crossover substudy was carried out in the initial phase of the DIRECT PLUS trial. Both shakes included 28 g of walnuts and one medium-sized banana. The two shakes were equivalent in calories (366 kcal in the Wolffia globosa Mankai shake; 351 kcal in the yogurt shake) and macronutrient contents (carbohydrates, 35 g in both the mankai and yogurt shakes; protein, 12 g in the mankai shake, 11 g in the yogurt shake; fat, 20 g in the mankai shake, 19 g in the yogurt shake). Mankai shake, compared to the yogurt shake, produced lower postprandial glucose peaks (mankai, 13.4±9.2 mg/dL; yogurt, 19.3±15.1 mg/dL; p= 0.044), more delayed glucose peaks (mankai, 77.5 ± 29.2 min; yogurt, 59.2±28.4 min; p=0.037), and a faster return to baseline glucose levels (mankai, 135.8±53.1 min; yogurt, 197.5±70.2 min; p=0.012). The mankai shake also resulted in lower next-morning fasting glucose levels (mankai, 83.2±0.8 mg/dL; yogurt, 86.6±13 mg/dL; p=0.041). Satiety rank was slightly higher for the mankai shake compared with the yogurt shake (7.5 vs. 6.5; p=0.035).

In the DIRECT PLUS randomized controlled trial, after 6 months, the green Mediterranean group achieved a greater decrease in homeostatic model assessment for insulin resistance compared to the control group (HOMA-IR; green Mediterranean, -0.77; Mediterranean, -0.46; control, -0.27; p=0.020
between green Med and control groups) (Tsaban et al., 2020). However, fasting plasma glucose was similarly decreased in all 3 groups.

Non-alcoholic fatty liver disease (NAFLD): BENEFIT WITH THE GREEN MEDITERRANEAN DIET

NAFLD is a condition where too much fat is stored in the liver (in people who drink little or no alcohol) and this condition is associated with elevated liver enzymes, insulin resistance, type 2 diabetes, cardiovascular disease risk, and cancers. No clinical trials have tested mankai alone in people with NAFLD.

In the DIRECT PLUS randomized controlled trial, after 18 months of intervention, the NAFLD prevalence declined from 62% to 54.8% in the control group, 47.9% in the Mediterranean group, and 31.5% in the green Mediterranean group (p=0.012 between groups) (Meir et al., 2021). Adjustment for weight loss resulted in a significant difference in NAFLD prevalence between the two Mediterranean diet groups (p=0.024). The green Mediterranean group achieved approximately double the percentage of intrahepatic fat loss (-38.9% proportionally), as compared with the Mediterranean group (-19.6% proportionally; p=0.035, weight loss adjusted) and control group (-12.2% proportionally; p<0.001). After 18 months, both Mediterranean diet groups had significantly higher total plasma polyphenol levels (0.47±0.4 mg/L for both) as compared with the control group (0.35±0.4 mg/L; p<0.05 for both), with higher detection of naringenin (control, 4.4%; Med, 30.4%; green Med, 65.2%; p=0.001) and 2-5-dihydroxybenzoic-acid (control, 11.9%; Med, 37.4%; green Med, 50.7%; p<0.001) in the green Mediterranean diet group. Greater intrahepatic fat % loss was associated with each of the following: increased intake of mankai, increased intake of walnuts, decreased red/processed meat consumption, improved serum folate, a decline in diastolic blood pressure, decreased triglycerides/HDL ratio, and decreased cholesterol/HDL ratio, (p<0.05 for all).

The authors discuss that the green Mediterranean diet may reduce liver fat buildup (liver steatosis) through actions of abundant polyphenols, which reduce de novo lipogenesis, increase fatty acid oxidation, and reduce oxidative stress (Meir et al., 2021). Because of the numerous elements to the green Mediterranean diet, including increased green tea, mankai, walnuts, and decreased meat intake, it is not possible to pinpoint the effects of mankai alone.
Safety: No clinical trials have tested the long-term safety of manka supplementation. Mankai contains high levels of manganese, which could be unsafe. Mankai contains phylloquinone, which could antagonize the effects of anticoagulants such as coumarins.

Types of evidence:
- 1 safety assessment by the European Food Safety Authority Panel
- 1 randomized controlled trial comparing mankai, soft cheese, and green peas
- Several laboratory studies

No clinical trials have tested the long-term safety of mankai treatment on its own. The clinical trials that included mankai as part of a dietary intervention were not designed to investigate safety. In a randomized controlled trial of 36 men, effects of 3 iso-protein (30 g) meals were compared: soft cheese, green peas, and mankai (Kaplan et al., 2019). Blood concentrations of essential amino acids were significantly increased in all 3 iso-protein meals. Liver enzyme levels (ALT) remained unchanged after 180 minutes compared to baseline, with no significant differences between the 3 iso-protein meals.

In a safety assessment by the European Food Safety Authority Panel (EFSA Panel) on Nutrition, Novel Foods and Food Allergens, Wolffia globosa powder (cultivated mankai plant that is washed with hot water and dried) as a novel food was deemed a safety concern due to a potential increase in manganese intake (EFSA Panel). Intake of mankai was calculated for adults at 286 mg/kg bodyweight per day. The EFSA Panel noted that the safety of Wolffia globosa powder as a novel food could not be established; however, with the exception of concerns related to the manganese intake, considering the composition of mankai, consumption is “not nutritionally disadvantageous”.

The concentration of manganese in the Wolffia globosa powder may reach 116.5 mg/kg, which is higher compared to foods rich in manganese, including nuts (24.9 mg/kg), dried fruit, nuts, and seeds (11.9 mg/kg), and chocolate (8.9 mg/kg)(EFSA Panel). The EFSA Panel noted that exposure to high levels of manganese may be neurotoxic. However, there is not a set upper limit for manganese intake. The EFSA has previously reported that estimated mean manganese intakes of adults in Europe ranged from 2 to 6 mg/day, with the majority of values around 3 mg/day. Mankai mankai supplement alone (2.33 mg/day) could increase manganese intake by 39% as compared to the highest manganese intake estimates for adults.

The analyzed Wolffia globosa powder had concentrations of pesticides, mycotoxins, and cyanotoxins which were below the quantification limit (EFSA Panel). Stability testing showed that the powder is
stable for 16 months from manufacturing date under recommended storage conditions (in nitrogen-sealed packs at room temperature and humidity below 60%). EFSA calculated the intake of heavy metals and trace elements from the powder, which are dependent on the cultivation conditions. The panel considers that levels of heavy metals and trace elements are not expected to exceed established maximum levels and upper levels for any population group.

In a subacute toxicity study (4-day repeated dosing) in rats, mankai treatment (0, 1700, 2500, and 3400 mg/kg/day) did not significantly affect body weight or result in abnormal findings (EFSA Panel). Clinical chemistry and hematology analysis showed no major differences between control and mankai-treated rats except for a highly significant ~50% reduction in concentrations of lactate dehydrogenase (LDH) and creatine kinase (CPK) with mankai. No gross pathology abnormalities were observed in the animals.

In a 28-day subchronic toxicity study, rats given mankai in chow (5, 10, or 20 g mankai/kg feed), corresponding to mean daily intake of 300, 600, and 1200 mg/kg bw in females and 250, 500, and 1000 mg/kg bw in males, did not result in any mortalities and there were no statistically significant differences in bodyweight, feed consumption, or clinical or histopathological observations compared to control rats (EFSA Panel). Another 28-day subchronic toxicity study was conducted in male rats given a rodent diet with 20 g/kg feed or a diet without mankai, and no significant differences between mankai and control were seen for bodyweight, feed consumption, hematological findings, and histopathological findings.

In a 90-day toxicity study, rats were fed 0, 5, 10, or 20% mankai (w/w) in a powdered diet (EFSA Panel; Kawamata et al., 2020). There were no treatment-related effects in clinical observations, body weight, food consumption, or ophthalmology. The mean mankai intakes were 3,176, 6,491, and 13,164 mg/kg bw per day in males and 3,583, 7,423, and 15,027 mg/kg bw per day in females.

Urinalysis data showed that mankai treatment significantly increased water intake and decreased urinary sodium in high-dose males (EFSA Panel). In female rats, no difference in water intake was observed. Mankai treatment was not associated with any findings regarding weight and histopathology of kidneys in male or female rats.

Hematology data showed a decrease in fibrinogen in mid- and high-dose female rats, which were considered as treatment-related (EFSA Panel). No changes were seen in male rats. No histopathological changes in the liver were observed with mankai treatment.
In high-dose male rats, there was a statistically significant decrease in the relative prostate weight (14% decrease), though there were no histopathological findings seen for prostate (EFSA Panel). In female rats receiving low-dose mankai, there was a significant decrease in heart weight, though no differences in histopathology were observed across groups.

Based on the totality of evidence from the rat toxicity studies, the EFSA Panel considers the middle dose tested for males (6.5 g/kg bw per day) as the overall no observed adverse effect level (NOAEL) of this study (EFSA Panel).

In a genotoxicity study, dry mankai was not genotoxic in a bacterial reverse mutation test and in vitro micronucleus assay (Kawamata et al., 2020).

In human cell lines (HUVEC, K-562, and HeLa cells), extracts from duckweed species, including Wolffia globosa, did not exert any anti-proliferative or cytotoxic effects (Sree et al., 2019).

Wolffia globosa grown in contaminated water could be of concern as this plant species has shown significant uptake and accumulation of cadmium, arsenic, and chromium (Boonyapookana et al., 2002; Zhang et al., 2009; Xie et al., 2013). For this reason, Wolffia globosa has been considered as having potential for phytofiltration of contaminated water and paddy soil.

Drug interactions: Drug interactions with mankai have not been well studied. In a safety assessment by the European Food Safety Authority Panel (EFSA Panel) on Nutrition, Novel Foods and Food Allergens, Wolffia globosa powder contained phyloquinone concentrations (2-12 mg/100 g), which when consumed as food supplement, may reach 2.4 mg/day for adults (EFSA Panel). This level of phyloquinone may antagonize the effects of anticoagulants such as coumarins, so people taking such therapies need to consult with their healthcare provider on whether mankai is safe for them.

Sources and dosing: Mankai (Wolffia globosa) is usually in powder form or frozen cubes for smoothies. In Thailand and other Asian countries, it is added to food (e.g., curry, salad, omelet). Mankai powder is manufactured by cultivating Wolffia globosa plants in greenhouses or in a semi-open mesh construction under controlled conditions, with water and fertilizers used for the growth of the plant (EFSA Panel). Fresh plant material is washed with hot water and dried using a dehydrator or freeze-dryer.
Research underway: There are currently no ongoing clinical trials testing mankai for dementia or age-related diseases, based on ClinicalTrials.gov.

Search terms:
Pubmed, Google: Wolffia globosa and mankai

Websites visited for Wolffia globosa and mankai:
- ClinicalTrials.gov (0)
- NIH RePORTER (0)
- Examine.com (0)
- DrugAge (0)
- Geroprotectors (0)
- Drugs.com (0)
- WebMD.com (0)
- Labdoor.com (0)
- ConsumerLab.com (0)

Disclaimer: Cognitive Vitality Reports® do not provide, and should not be used for, medical advice, diagnosis, or treatment. You should consult with your healthcare providers when making decisions regarding your health. Your use of these reports constitutes your agreement to the Terms & Conditions.

If you have suggestions for drugs, drugs-in-development, supplements, nutraceuticals, or food/drink with neuroprotective properties that warrant in-depth reviews by ADDF’s Aging and Alzheimer’s Prevention Program, please contact INFO@alzdiscovery.org. To view our official ratings, visit Cognitive Vitality’s Rating page.