Cognitive Vitality Reports® are reports written by neuroscientists at the Alzheimer’s Drug Discovery Foundation (ADDF). These scientific reports include analysis of drugs, drugs-in-development, drug targets, supplements, nutraceuticals, food/drink, non-pharmacologic interventions, and risk factors. Neuroscientists evaluate the potential benefit (or harm) for brain health, as well as for age-related health concerns that can affect brain health (e.g., cardiovascular diseases, cancers, diabetes/metabolic syndrome). In addition, these reports include evaluation of safety data, from clinical trials if available, and from preclinical models.

LM11A-31 (LM11A-31-BHS, C-31)

Evidence Summary
LM11A-31 has benefited animal models of AD, HD, aging, HIV/FIV, TBI, peripheral neuropathy, spinal cord injury, and retinopathy. Safety and efficacy data from the AD trial should become available soon.

Neuroprotective Benefit: LM11A-31 treatment has shown neuroprotective and procognitive effects in numerous animal models. Efficacy in Alzheimer’s disease patients will be determined when data from clinical trials become available.

Aging and related health concerns: LM11A-31 shows benefit in models of peripheral neuropathy, nerve injury, and retinopathy. No studies have been carried out in humans to date.

Safety: Detailed safety data in humans have not been published. More safety data will become available once the phase 2 results are released. In animal models, no obvious adverse effects have been observed except transient decreases in hematocrit.
What is it? LM11A-31 is an orally available, brain-penetrant, small molecule ligand for the p75 neurotrophic receptor (p75NTR). p75NTR levels are increased in Alzheimer’s disease and the receptor is expressed in neurons that are vulnerable to the disease (Nguyen et al., 2014). p75NTR binds neurotrophins such as NGF and BDNF, and its signaling can promote either neuronal survival or apoptotic death, depending on its ligand, expression patterns of other neurotrophin receptors, and downstream signaling elements. For example, proNGF induces death of neurons and oligodendrocytes through p75NTR and activation of apoptotic machinery (Lee et al., 2001; Beattie et al., 2002). In other systems, p75NTR signaling through PI3K/AKT or NFκB promotes cell survival (Carter et al., 1996; Roux et al., 2001).

LM11A-31 selectively activates p75NTR survival pathways and inhibits apoptosis signaling (Massa et al., 2006). LM11A-31 interacts with p75NTR but not TrkA.

LM11A-31-BHS, a modified version of LM11A-31 that was advanced to clinical trials, is under development by PharmatrophiX for the treatment of Alzheimer’s disease.
Neuroprotective Benefit: LM11A-31 treatment has shown neuroprotective and procognitive effects in numerous animal models. Efficacy in Alzheimer’s disease patients will be determined when data from clinical trials become available.

Types of evidence:
- Numerous laboratory studies

Human research to suggest prevention of dementia, prevention of decline, or improved cognitive function:
Not available.

Human research to suggest benefits to patients with dementia:
Not available. A double-blind randomized placebo-controlled phase 2 trial testing LM11A-31-BHS (200 mg or 400 mg capsules, taken orally, twice daily) in 242 mild-to-moderate Alzheimer’s patients was recently completed (NCT03069014). The results have not been published as of October 2021.

Mechanisms of action for neuroprotection identified from laboratory and clinical research:
Neuroprotective potential of LM11A-31 has been tested in numerous animal models. LM11A-31 crosses the blood-brain barrier based on rodent studies (Knowles et al., 2013).

Alzheimer’s disease models: LM11A-31 treatment has shown neuroprotective benefits in 3 models of Alzheimer’s disease.

In a mouse model of Alzheimer’s disease (APP/L/S mice), LM11A-31 treatment (0, 10, or 50 mg/kg/day, orally) for 3 months prevented deficits in novel object recognition and Y-maze performance (Knowles et al., 2013). In these mice, neuritic dystrophy was present in the basal forebrain, hippocampus, and cortex, but was significantly reduced by LM11A-31 treatment, with no effects on amyloid levels.

In the same mouse model as above (APP/L/S mice), LM11A-31 treatment (5, 25, 50, or 100 mg/kg/day, oral gavage) for 3 months prevented cognitive impairment as measured by water maze performance and fear conditioning, reduced phosphorylation of tau, inhibited aberrant tau folding, decreased microglial activation, and attenuated reactive astrocytes (Nguyen et al., 2014). LM11A-31 treatment also decreased cholinergic neurite degeneration.
In two mouse models of Alzheimer’s disease (APP^{L/S} mice and Tg2576 mice), LM11A-31 treatment (50 or 75 mg/kg, oral gavage) for 3 months at age-ranges during which marked Alzheimer’s-like pathology manifests prevented and/or reversed atrophy of basal forebrain cholinergic neurites and cortical dystrophic neurites (Simmons et al., 2014). In APP^{L/S} mice, LM11A-31 treatment started both in mid-stage (6-8 months of age) and in late-stage pathology (12-13 months) was successful in reversing the degeneration of neurites. Similar results were seen in female Tg2576 mice.

In a mouse model of Alzheimer’s disease (APP^{L/S} mice), LM11A-31 treatment (50 mg/kg/day, 6 days/week) for 3 months significantly lowered microglial activation, as measured by TSPO-PET ([18F]GE-180-PET imaging)(James et al., 2017).

Also in APP^{L/S} mice, LM11A-31 treatment for 3 months (from age 7.5-8 months to 10.5-11 months) rescued the significant spine density loss (~42%) such that spine density was comparable to that of vehicle-treated wild-type mice (Yang et al., 2020). In neurons exposed to oligomeric Aβ, LM11A-31 treatment inhibited Aβ-associated degeneration of neurites and spines. LM11A-31 treatment also inhibited tau phosphorylation, cleavage, oligomerization, and misorting. APP^{L/S} mice has increased levels of tau cleaved at Asp421, but treatment with LM11A-31 reduced these levels, in part, through the normalization of caspase 3/7 activity to baseline levels. Increased missorting of tau and its accumulation in dendrites leads to increased Fyn binding, which in turn facilitates Fyn-mediated phosphorylation of the NMDA receptor GluN2B subunit that are associated with glutamate excitotoxicity (Um et al., 2012).

In hippocampal neuron cultures, LM11A-31 treatment prevented the Aβ-induced increase in the active form of Fyn (measured by p-FynY416), as well as Fyn kinase targets that play major roles in synaptotoxicity (p-tau-Y18 and p-GluN2B-Y1472)(Yang et al., 2020). In hippocampal neuronal cultures, Aβ oligomer exposure induced spine loss and decreased phosphorylation (Ser3) of coflin, an actin-binding protein that plays an essential role in regulating actin dynamics and neuronal/synaptic morphology (Yang et al., 2020). However, these reductions were inhibited by administration of LM11A-31. Cofilin phosphorylation was also reduced in APP^{L/S} mice, but levels were restored by treatment with LM11A-31. These actions may be through inhibition of RhoA, which is an important regulator of neurite growth and dendritic spine dynamics.

In a mouse model of tauopathy (PS19 mice), LM11A-31 treatment (50 mg/kg, oral gavage, 5 days/week) started at 6 months of age (after tau pathology onset) and continued for 3 months improved hippocampus-dependent behaviors, measured by the Morris water maze and novel object recognition test (Yang et al., 2020). Trends for improvement in fear conditioning were seen with LM11A-31 treatment, but the results were not statistically significant. Cognitive benefits with LM11A-31 were seen
concurrently with reductions in 1) excess activation of hippocampal cdk5 and JNK kinases and calpain, 2) excess coflin phosphorylation, 3) tau phosphorylation, acetylation and cleavage, 4) multiple forms of insoluble tau aggregates and filaments, and 5) microglial activation. Hippocampal extracts from treated mice had significantly reduced seed-competent tau. In pyramidal neurons, LM11A-31 treatment reversed dendritic spine loss and restored dendritic complexity. LM11A-31 did not improve cognitive performance in non-transgenic mice, suggesting that LM11A-31 does not have a non-specific cognitive enhancing effect.

Old mice: Aging is associated with degeneration of basal forebrain cholinergic neurons and cognitive impairment. In aged mice, LM11A-31 treatment (50 mg/kg/day, oral gavage) started at the age of 15-18 months resulted in a dose-related preservation of basal forebrain cholinergic neurons (Xie et al., 2019). Even a one-month treatment started at 17-18 months of age also preserved cholinergic cell area. In very old mice aged 21 to 25 months old, LM11A-21 treatment increased cell size beyond that observed in 18-month-old mice, increased neurite length, and increased cholinergic fiber density. LM11A-31 treatment also increased the number of synapses in the hippocampus, as measured by synaptophysin levels. These studies suggest that LM11A-31 may prevent and also reverse age-associated basal forebrain degeneration.

Huntington’s disease model: In a mouse model of Huntington’s disease (R6/2 mice), treatment with LM11A-31 (50 mg/kg/day, oral gavage, 5-6 days/week) for 7-8 weeks starting at 4 weeks of age before cognitive/motor symptom onset alleviated volume reductions in multiple brain regions, including striatum, globus pallidus, cortex, corpus callosum and contiguous external capsule (Simmons et al., 2021). However, no treatment effects were seen in the volumes of the hippocampus or thalamus.

LM11A-31 treatment also normalized changes in diffusion tensor imaging metrics and diminished increases in plasma cytokine levels, including TNF-α, IL-1β, and IL-6. Also, R6/2 mice treated with vehicle had increased urinary levels of the p75NTR extracellular domain (ecd), a cleavage product released with pro-apoptotic ligand binding, while LM11A-31 treatment reduced this increase. While further research is needed, levels of urinary p75NTR-ecd may have the potential to be a surrogate marker of disease state and therapeutic efficacy in Huntington’s disease.

HIV/FIV models: HIV can penetrate into the brain and the presence of HIV in the central nervous system leads to cognitive deficits in many people living with HIV even with antiretroviral treatment. In FIV-infected cats that were beginning to show cognitive deficits, LM11A-31 treatment (13 mg/kg, twice daily) for 10 weeks normalized the deficits, as measured by T-maze testing and novel object recognition.
Although LM11A-31 treatment did not affect systemic FIV titers, there was a log drop in CSF FIV titers.

In a mouse model of HIV (HIV gp120 transgenic mice), LM11A-31 treatment (50 mg/kg/day) for 4 months suppressed microglial (but not astrocytic) activation, increased microtubule associated protein-2 (MAP-2) expression, reduced dendritic varicosities, and slowed the loss of parvalbumin-positive neurons in the hippocampus (Xie et al., 2021).

In cultured rat neurons exposed to HIV gp120 or to conditioned medium from human monocyte-derived macrophages treated with gp120, LM11A-31 administration at nanomolar concentrations prevented cell death, stabilized calcium homeostasis, prevented the development of dendritic swelling (beading) and cytoskeletal damage, and restored mitochondrial movement (Meeker et al., 2016). The restorative effects of LM11A-31 may be due, in part, to the sustained activation of phospho-Akt and phospho-CREB in neurons, prevention of actin disruption, and preservation of the transport of mitochondria.

Traumatic brain injury model: In a rat model of traumatic brain injury, LM11A-31 treatment (50 or 75 mg/kg/day, i.p.) started at 24 hours after injury (controlled cortical impact) and continued for 21 days significantly improved learning and memory outcomes (Haefeli et al., 2017).

Sepsis-induced cognitive impairment: In a mouse model of sepsis-induced cognitive impairment (induced by cecal ligation and puncture), LM11A-31 treatment (50 mg/kg/day, in drinking water) started immediately after surgery significantly reversed the sepsis-induced cognitive impairment (measured by novel object discrimination and fear conditioning) and attenuated the sepsis-induced hippocampal inflammatory responses and neuronal cell death (Ji et al., 2018). Specifically, IL-1β levels were elevated in septic mice but restored with LM11A-31 treatment. TNF-α and IL-6 levels were not altered with treatment. Sepsis increased microglial activity (measured by IBA1+ cells) and caspase-3-positive cells in the CA1, CA3, and DG of the hippocampus, but these were restored with LM11A-31 treatment. The number of spines as well as BDNF levels were significantly decreased in septic mice, but LM11A-31 treatment restored these to levels comparable to sham-operated mice.

APOE4 interactions: Unknown.
Aging and related health concerns: LM11A-31 shows benefit in models of peripheral neuropathy, nerve injury, and retinopathy. No studies have been carried out in humans to date.

Types of evidence:
- Several laboratory studies

No clinical trials have tested LM11A-31 in patients with age-related health conditions. Several studies have tested LM11A-31 in animal and cell culture models of age-related diseases.

Mortality: EXTENDED LIFESPAN IN A MOUSE MODEL OF TAUOPATHY
In the PS19 mouse model of tauopathy, survival rate is 64% at the 9-month time point while rates for non-transgenic mice were 97-100% (Yang et al., 2020). LM11A-31 treatment (50 mg/kg, oral gavage, 5 days/week) started at 6 months of age (after tau pathology onset) and continued for 3 months significantly improved survival rate to 94% at 9 months. In a separate survival study, 50% of PS19 mice treated with vehicle reached 327 days old, whereas 50% of PS19 mice treated with LM11A-31 reached 404 days old. Treatment with LM11A-31 extended survival in PS19 mice with an increase in median survival time from 334 to 443 days (33% increase)(p=0.0032).

Peripheral neuropathy, nerve injury: BENEFIT IN RODENT MODELS
In a mouse model of peripheral neuropathy (cisplatin-induced experimental peripheral neuropathy), treatment with LM11A-31 (25 or 50 mg/kg, i.p., once daily) for 10 weeks prevented the decrease in peripheral nerve sensation, while alleviating cisplatin-induced abnormal sural nerve fiber morphology (Friesland et al., 2014). Rho GTPase activation is increased following trauma in several models of neuronal injury and cisplatin-treated mice also had increased RhoA activity (increased p-RhoA), while this effect was reversed by LM11A-31 treatment.

In a mouse model of peripheral nerve injury (induced by sciatic nerve transection), LM11A-31 applied to the site of injury resulted in successful regeneration of axons of nearly three times as many motoneurons and reinnervation of twice as many muscle fibers by regenerating motor axons (15.6% vs 8.4%), compared to untreated controls (McGregor et al., 2021). LM11A-31 treatment to the injured nerve stump also enhanced functional recovery, as measured through motor unit number estimation (MUNE; 43.1 vs 15.2 in untreated mice). Expression of p75NTR surrounding regenerating axons appears to contribute to poor regeneration during the first two weeks after peripheral nerve injury, during which LM11A-31 treatment was beneficial.
In a mouse model of spinal contusion injury, LM11A-31 treatment (0, 10, 25, or 100 mg/kg, oral gavage, twice daily) beginning 4 hours after injury and until study completion promoted functional recovery and survival of oligodendrocytes while increasing the number of myelinated axons by twofold at the highest dose (Tep et al., 2013). LM11A-31 was effective in improving motor function and coordination, as measured by both weight-bearing open-field tests and non-weight-bearing swim tests. The functional improvement correlated with an over 50% increase in the number of surviving oligodendrocytes and myelinated axons. LM11A-31 inhibited proNGF binding to p75NTR, thereby preventing the JNK3-mediated apoptotic signaling. It is not known whether a further delay in LM11A-31 treatment (beyond 4 hours post-injury) will show protective benefit.

In a mouse model of spinal cord injury-induced lower urinary tract dysfunction (detrusor sphincter dyssynergia), LM11A-31 treatment (100 mg/kg/day, oral gavage) started 7 days following injury and for up to 6 weeks ameliorated the detrusor sphincter dyssynergia and detrusor overactivity, significantly improving bladder function and preventing the urothelial damage and bladder wall remodeling (Zabbarova et al., 2018). Pretreatment with LM11A-31 (started 1 day before injury) prevented the spinal cord injury-induced morphological changes in the bladder wall.

Retinopathy: IMPROVED IN MOUSE MODELS
In a mouse model of retinal ischemia-reperfusion, LM11A-31 treatment (50 mg/kg, every other day) started 48 hours after injury significantly ameliorated visual function, as measured by the visual-clue water maze test (Elshaer et al., 2021).

Diabetic macular edema, which can lead to vision loss, can be set off by the breakdown of the inner blood-retinal barrier. Diabetes causes an imbalance of NGF isoforms such that proNGF and its receptor, p75NTR, are upregulated (Elshaer et al., 2019). In a mouse model of diabetes-induced retinal vascular permeability (induced by streptozotocin injection), LM11A-31 treatment (50 mg/kg/day, oral gavage) for 4 weeks significantly mitigated proNGF, VEGF, IL-1β, and TNF-α expression, while preserving the blood-retinal barrier integrity (Elshaer et al., 2019). The mechanism through which LM11A-31 preserves the blood-retinal barrier integrity involves modulation of the upregulated p75NTR–RhoA kinase pathway as well as controlling the paracrine effects (e.g., VEGF) and proinflammatory mediators in the retina.

Arthritis: DECREASED IL-6 IN IN VITRO STUDIES
In patients with arthritis, high levels of NGF are observed. In synovial tissue and cells of patients with juvenile idiopathic arthritis, inflamed synoviae express high levels of proNGF and p75NTR, which correlated with the severity of clinical symptoms (Minnone et al., 2017). Notably, inhibition of p75NTR
with LM11A-31 abolished the proNGF-induced production of IL-6 in patients' mononuclear cells, while inhibition of TrkA did not. These cell culture studies suggest that the proNGF-p75NTR axis promotes proinflammatory mechanisms contributing to chronic tissue inflammation, while inhibition of p75NTR may dampen the inflammation. It is currently unknown whether these in vitro findings would translate to benefits in human patients with arthritis.

Safety: Detailed safety data in humans have not been published. More safety data will become available once the phase 2 results are released. In animal models, no obvious adverse effects have been observed except transient decreases in hematocrit.

Types of evidence:

- Several laboratory studies

Two phase 1 studies for LM11A-31-BHS have been completed in healthy subjects ([PharmatrophiX](#)). Details of the trial data have not been made public.

In FIV-infected cats, treatment with LM11A-31 (10 mg free base/kg), orally, intravenously, and subcutaneously did not result in any significant adverse effects ([Fogle et al., 2021](#)). A decreased hematocrit was noted in 2 out of 4 cats at 48 hours following oral dosing, in 1 out of 2 cats at 72 hours following intravenous dosing and in 2 out of 2 cats following subcutaneous dosing. The effect was transient, and the cats in chronic dosing study exhibited only sporadic, mild decreases in hematocrit over the entire study period. No other significant laboratory changes were noted on the CBC, serum biochemistry profile or urinalysis throughout the entire length of the study. Body weight, body condition score, sensory perception, and daily activity were not affected by LM11A-31 treatment.

In humans, intrathecal administration of NGF for the treatment of Alzheimer’s was limited by severe pain ([Eriksdotter Jonhagen et al., 1998](#)). Similar symptoms including pain and weight loss have been observed in rodents after peripheral NGF treatment. In a mouse model of Alzheimer’s disease (APP^{L/S} mice), LM11A-31 treatment (10 or 50 mg/kg/day, oral gavage) for 3 months did not induce hyperalgesia induced by heat ([Knowles et al., 2013](#)).

In a mouse model of spinal cord injury (spinal contusion injury), LM11A-31 treatment (0, 10, 25, 100 mg/kg, oral gavage) beginning at 4 hours post-injury and continued twice daily until study completion
did not cause any weight loss or other obvious adverse effects (Tep et al., 2013). Also, LM11A-31 did not exacerbate pain sensitivity.

Drug interactions: Drug interactions for LM11A-31 or LM11A-31-BHS have not been well documented.

Sources and dosing: LM11A-31 and LM11A-31-BHS are under clinical development by PharmatrophiX. LM11A-31-BHS is a modified version of LM11A-31 that was advanced to clinical trials. In a randomized double-blind phase 2 clinical trial in mild-to-moderate Alzheimer’s patients, doses of 400 mg/day and 800 mg/day of LM11A-31-BHS (200 mg or 400 mg capsules, taken orally, twice daily) have been tested (NCT03069014).

In rodent studies, doses ranging from 5 to 100 mg/kg have been used, with 50 mg/kg being the most common (Nguyen et al., 2014; Xie et al., 2019; Yang et al., 2020; Simmons et al., 2021). Most studies used the oral gavage route. In a study in an Alzheimer’s mouse model, LM11A-31 [2-amino-3-methylpentanoic acid (2-morpholin-4-yl-ethyl)-amide], was custom manufactured in the hydrochloride salt form by Olon Ricerca Biosciences LLC (Concord, OH) (Yang et al., 2020). Each preparation was purified by HPLC, at greater than 99.8% purity. For *in vitro* testing, LM11A-31 was dissolved in water prior to dilution in culture medium. For *in vivo* testing, LM11A-31 was dissolved in water at a concentration of 5 mg/ml and stored at −20 °C.

Research underway: A double-blind randomized placebo-controlled phase 2 trial testing LM11A-31-BHS (200 mg or 400 mg capsules, taken orally, twice daily) in mild-to-moderate Alzheimer’s patients was recently completed (NCT03069014). This trial enrolled 242 participants and the treatment duration was 26 weeks. The study completion date was noted as June 8, 2020. However, the results have not been published as of October 2021. NIH is currently funding several programs that use LM11A-31 in the context of spinal cord injury, post-stroke mixed dementia, and radiation cystitis (NIH RePORTER).
Search terms:
Pubmed, Google: LM11A-31, LM11A-31-BHS, C-31

Websites visited for LM11A-31:
- Clinicaltrials.gov (1)
- NIH RePORTER
- DrugAge (0)
- Geroprotectors (0)
- Drugs.com (0)
- WebMD.com (0)
- PubChem
- DrugBank.ca (0)
- Cafepharma (0)
- Pharmapro.com (0)

Disclaimer: Cognitive Vitality Reports® do not provide, and should not be used for, medical advice, diagnosis, or treatment. You should consult with your healthcare providers when making decisions regarding your health. Your use of these reports constitutes your agreement to the Terms & Conditions.

If you have suggestions for drugs, drugs-in-development, supplements, nutraceuticals, or food/drink with neuroprotective properties that warrant in-depth reviews by ADDF’s Aging and Alzheimer’s Prevention Program, please contact INFO@alzdiscovery.org. To view our official ratings, visit Cognitive Vitality’s Rating page.